Overview
MCP Server with LangGraph is a production-ready, multi-layered architecture designed for enterprise AI applications. It combines stateful AI agents, enterprise authentication, fine-grained authorization, and comprehensive observability.High-Level Architecture
Core Components
MCP Server
Model Context Protocol server - Exposes AI agents as standard tools.stdio Transport
Standard input/output for CLI integration
- Direct agent interaction
- Shell scripting support
- Development and testing
StreamableHTTP
HTTP API with streaming support
- REST endpoints
- Server-Sent Events (SSE)
- Production deployments
- Protocol-compliant MCP implementation
- Tool registration and discovery
- Streaming responses
- Error handling and retries
src/mcp_server_langgraph/server.py
LangGraph Agent
Stateful AI agent with functional API and conditional routing.- State Management
- Tool Execution
- Checkpointing
AgentState - Pydantic model for type-safe stateFeatures:
- Immutable state transitions
- Type validation
- Checkpointing support
src/mcp_server_langgraph/agent.py
Authentication Layer
Pluggable authentication with multiple provider support. Providers:InMemoryUserProvider
InMemoryUserProvider
Development and testing
- Pre-defined users (alice, bob, admin)
- No external dependencies
- Fast iteration
- Zero configuration
KeycloakUserProvider
KeycloakUserProvider
Production SSO
- OpenID Connect / OAuth2
- JWKS token verification
- Refresh token rotation
- Role/group synchronization
Custom Providers
Custom Providers
Extensible architectureImplement
UserProvider interface:src/mcp_server_langgraph/auth/
Authorization Layer
Fine-grained, relationship-based access control with OpenFGA. Authorization Model:- Relationship-based permissions
- Hierarchical roles (admin → member → viewer)
- Multi-tenancy support
- Audit logging
- Keycloak role synchronization
src/mcp_server_langgraph/auth/openfga.py
Session Management
Flexible session storage with Redis or in-memory backends.- Architecture
- Features
- Configuration
src/mcp_server_langgraph/auth/session.py
LLM Integration
Multi-LLM routing via LiteLLM with automatic fallback. Supported Providers (100+):- Cloud: Anthropic, OpenAI, Google, Azure, AWS Bedrock
- Open Source: Ollama (Llama, Mistral, Qwen, DeepSeek)
- Custom: Bring your own endpoints
- Automatic fallback on errors
- Load balancing
- Rate limiting
- Cost tracking
- Response caching
src/mcp_server_langgraph/llm_factory.py
Observability
Dual observability stack - OpenTelemetry + LangSmith.- OpenTelemetry
- LangSmith
- Structured Logging
Distributed tracing and metricsTraces:
- End-to-end request flow
- LLM call timing
- Authorization decisions
- Tool executions
- Request rate, latency, errors
- Authentication success/failure
- Authorization decisions
- LLM token usage
- Session lifecycle
src/mcp_server_langgraph/observability/
Secrets Management
Secure secret storage with Infisical or cloud-native solutions.- Infisical
- Cloud Providers
- Local Development
Centralized secret management
- End-to-end encryption
- Secret versioning
- Access controls
- Audit logging
- Secret rotation
src/mcp_server_langgraph/config.py
Data Flow
Request Flow (Authenticated Request)
Authentication Flow (Keycloak SSO)
Deployment Architectures
Development (Docker Compose)
Command:docker compose up
Production (Kubernetes)
Deployment: See Kubernetes Guide or Helm GuideDesign Principles
Modularity
Modularity
- Pluggable authentication providers
- Swappable session stores
- Custom authorization models
- Extensible tool framework
Type Safety
Type Safety
- Pydantic models for all data
- Type hints throughout
- Validation at boundaries
- Property-based testing
Observability First
Observability First
- Trace every request
- Structured logging
- Comprehensive metrics
- Correlation IDs
Security by Default
Security by Default
- Authentication required
- Authorization on all tools
- Secrets in secure stores
- Encrypted communications
Production Ready
Production Ready
- Health checks
- Graceful shutdown
- Error recovery
- Rate limiting
- Circuit breakers
Technology Stack
- Core
- Authentication
- Observability
- Infrastructure
- Python 3.10+
- LangGraph: Stateful agent framework
- LiteLLM: Multi-LLM router
- Pydantic: Data validation
- FastAPI: HTTP server (StreamableHTTP)
Next Steps
Quick Start
Get started in 5 minutes
Authentication
Configure authentication
Authorization
Setup fine-grained permissions
Observability
Enable tracing and metrics
Enterprise-Grade Architecture: Production-ready components designed for scale and reliability!