14. Pydantic Type Safety Strategy
Date: 2025-10-13Status
AcceptedCategory
Core ArchitectureContext
Python’s dynamic typing creates runtime errors that could be caught at development time:- Invalid data passed to functions
- Missing required fields
- Type mismatches
- No IDE autocomplete
- Runtime validation of untrusted input
- Type-safe API contracts
- Self-documenting code
- IDE support (autocomplete, type checking)
Decision
Use Pydantic BaseModel for all data structures requiring validation.Implementation
Consequences
Positive Consequences
- Runtime Validation: Automatic validation of all fields
- Type Safety: mypy catches type errors
- IDE Support: Full autocomplete and type hints
- Self-Documenting: Field descriptions in schema
- JSON Serialization: Built-in model_dump_json()
Negative Consequences
- Performance: Validation overhead (~10-50µs per model)
- Boilerplate: More code than plain dicts
- Learning Curve: Pydantic-specific patterns
Alternatives Considered
- dataclasses: No validation, just structure
- TypedDict: No runtime validation
- Plain dicts: No type safety
Usage Across Codebase
- Session Management: SessionData model (src/mcp_server_langgraph/auth/session.py:30)
- Authentication: UserData, AuthResponse models (src/mcp_server_langgraph/auth/user_provider.py:26)
- Configuration: Settings, FeatureFlags (src/mcp_server_langgraph/core/config.py)
- Compliance: All GDPR, SOC 2, HIPAA models
References
- Dependency:
pyproject.toml:44-pydantic>=2.5.3 - Related ADRs: ADR-0005